回復 1# 的帖子
The answer:
1. depends on compiler/interpreter design in a computer machine...
e.g. multiplication is commutative but division is not! This raises the issue about associativity in interpretation/compilation...
2. depends on operation definition ...
"ab" = a times b but "12" = 1 times 10 and then plus 2 in a decimal system...
It becomes the issue of operational assumptions.
3. The order of operational precedence (e.g. forced operations over arithmetics) needs to be defined before any meaningful interpretation of computation of the given formula/expression can occur.
當下的問題在於施者和答者間在意譯上會否產生差異,若有的話,所謂的答案也不盡相同,亦也不應相同。
這個問題更有趣的地方,是在於常有人無故要求我們對於好像很簡單的問題需要達求相同答案,單一答案,且受某種假設規範去求答案,但這種答案卻是不會增加思考的機會!
說別人答錯,似乎能為自己向別人宣示一種知識上的權威,要別人服從自己的理解方法。但這是否有助思考?
[ 本帖最後由 futari 於 2017-2-13 18:44 編輯 ]